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Abstract. We compute the magnetic susceptibility and specific heat of the spin- 1
2

Heisenberg model on
the kagome lattice with high-temperature expansions and exact diagonalizations. We compare the results
with the experimental data on ZnCu3(OH)6Cl2 obtained by Helton et al. [Phys. Rev. Lett. 98, 107204
(2007)]. Down to kBT/J � 0.2, our calculations reproduce accurately the experimental susceptibility,
with an exchange interaction J � 190 K and a contribution of 3.7% of weakly interacting impurity spins.
The comparison between our calculations of the specific heat and the experiments indicate that the low-
temperature entropy (below ∼20 K) is smaller in ZnCu3(OH)6Cl2 than in the kagome Heisenberg model,
a likely signature of other interactions in the system.

PACS. 75.50.Ee Antiferromagnetics – 75.10.Jm Quantized spin models – 75.40.Cx Static properties

1 Introduction

After many years of theoretical investigations, the nature
of the ground-state of the spin- 1

2 Heisenberg model on the
kagome lattice is still not known. Although all numerical
studies have concluded to the absence of long-range mag-
netic (Néel) order [1–8], many basic questions such as the
existence of spontaneously broken symmetries, or the exis-
tence of a finite gap to magnetic excitations remain open.
In fact, many different states of matter have been proposed
for the kagome Heisenberg antiferromagnet: Z2 gapped
topological liquids [9,10], valence-bond crystals [11–14],
critical spin liquids with gapless spinons [15,12].

Recently, a promising spin- 1
2 antiferromagnetic insu-

lator with an ideal kagome geometry, ZnCu3(OH)6Cl2,
has been synthesized and studied for its magnetic prop-
erties [16–20]. Because these studies did not detect any
kind ordering (nor spin freezing) down to 50 mK, it could
represent one of the first and most remarkable realization
of a 2D quantum spin liquid [21,22].

To extract some information about the low-energy
physics of the kagome Heisenberg model from the experi-
ments on ZnCu3(OH)6Cl2, it is important to first analyze
in a quantitative way the possible role of magnetic de-
fects (and other “perturbations” to this model) in this
compound. In this paper we compare the experimental
data for the magnetic susceptibility χ and specific heat
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cv obtained by Helton et al. [16] with calculations for the
spin- 1

2 Heisenberg model on the kagome lattice based on
exact diagonalization (ED) data (partial spectrum of a
36-site cluster and full spectrum for 24-site and 18-sites
clusters) and high-temperature series expansion [23,24].
Down to temperature kBT/J = 0.2, the experimental sus-
ceptibility χexp(T ) can be very well fitted by that of the
kagome lattice Heisenberg model with J � 190 K plus a
contribution of about 4% of impurity spins with weak mu-
tual interactions (modeled by a ferromagnetic Curie-Weiss
temperature of � −6 K), likely mostly due to antisite dis-
order (Cu substituted to Zn on sites between the kagome
planes) [20,25]. The low temperature specific heat is dom-
inated by impurities (and other perturbations) below 2 K
and by phonons above 15 K. In the intermediate range,
the calculated specific heat appears to be larger than in
the experiment. We comment on this feature at the end
of the paper.

2 Uniform static susceptibility

The spin- 1
2 Heisenberg model reads:

H = J
∑

〈i,j〉
Si · Sj − gµBH

∑

i

Sz
i (1)

where the sum runs over pairs of nearest neighbor sites on
the kagome lattice and H is an external magnetic field.
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To fix the notations, we define the (zero-field) uniform
susceptibility per site χ(T ) as χ(T ) = gµB

N

∂
∑

i〈Sz
i 〉

∂H

∣∣∣
H=0

where N is the total number of spins.
The high-temperature expansion of χ has been com-

puted up to order O (
T−15

)
(included) by Elstner and

Young [23]:

χ(T ) =
4C0

J
χth(t = kBT/J)

χth(t) = (1/4)t−1 − (1/4)t−2 + . . . (2)

where C0 = 0.25(gµB)2 is the Curie constant and t
the reduced temperature. The truncated series χn(t) =∑n

i=0 cit
−i at order n = 14 and n = 15 agree with a rela-

tive error smaller than 10−2 for t > 1. Down to this tem-
perature, they already provide good approximations to
χth(t). The convergence of high-T series can be improved
using Padé approximants (PA). In the present case the
PA provide a reliable estimate of χth(t) at least down to
t ∼ 0.5.1 One representative PA (numerator of degree 8
and denominator of degree 7) is displayed Figure 1.

On a small enough system, it is possible to obtain
by ED the full spectrum (2N energy levels for N spins).
We have done so for two 18-site and 24-site kagome clus-
ters (with periodic boundary conditions). Then thermo-
dynamic quantities can be computed exactly as a func-
tion of T . For bigger systems, where one can still compute
some eigenstates by ED, one may use the approximate
method described in reference [26] to compute thermody-
namic quantities.2

The results for the susceptibility χ(t) are shown in Fig-
ure 1. Above t = 0.2, the relative difference between the
(exact) N = 18 and N = 24 curves is smaller than 0.5%.
We therefore make the (rather safe) assumption that our
finite-size results are good approximations to the thermo-
dynamic limit down to tmin � 0.2. This represents a small
gain over the coupled-cluster expansion of reference [27],
which is valid above t ∼ 0.3.

The χ(t) obtained with the approximate method for
N = 36 sites also agrees (with a relative error smaller than
2%) with the N = 24 results down to t � 0.2. Slightly be-
low, the 36-site susceptibility is still increasing and might
be a better approximation to the infinite-size limit than
the 24-site curve. Still, it is not possible decide at which t
finite-size (and/or errors due to the approximation in the

1 Comparing the PA and the exact curves for 18 and 24-site
clusters shows that the PA is in fact correct down to T ∼ 0.4J ,
see Figure 1.

2 In this method, one constructs the density of states in each
symmetry sector from the exact low and high energy states ob-
tained from ED and approximating in between the unknown
part of the spectrum with a smooth density of states. This
smooth part is constructed so that the first moments of the
density of states (Tr[Hn]), in each symmetry sector of the fi-
nite cluster, are exact up to n = 5. This Ansatz guaranties
that the thermodynamics becomes exact at low T (when ther-
mal excitations only involve the eigenstates computed exactly)
as well as at high T (when a re-summed high-temperature ex-
pansion up to T−5 is valid).

Fig. 1. (Color online) Magnetic susceptibility per spin as a
function of temperature. Dashed (magenta) curve: experimen-
tal data (Helton et al.), multiplied by J/(4C0) as a function
of kBT/J with J � 190 K and C0 = 0.504 K cm3/(mol of
Cu). Black squares: χs = J

4C0
(χexp(T ) − χimp(T )), obtained

from the experimental data χexp by subtracting the contribu-
tion χimp of a concentration x = 0.03655 of impurity spins
with a Curie-Weiss temperature θimp = −6.1 K. Red (resp.
cyan) curve: Exact χth for a N = 24 (resp. 18) site kagome
cluster with periodic boundary conditions. Blue curve: Results
for N = 36 spins obtained with the (approximate) method of
reference [26]. Green curve: Padé approximant from the high-
temperature expansion at order t−15. The Padé approximant
is not converged below t � 0.4 whereas the finite-size curves
are practically converged to the thermodynamic limit down to
t � 0.2. Below t = 0.2J , the later curves are only indicative.

density of states) will become too important. Safely, we
only use the theoretical results (noted χth) above t � 0.2
to fit the experimental data χexp for the susceptibility.

We fit χexp to a sum of contributions from the kagome
spins χs and the impurities χimp in the following way:

χexp(T ) =
4C0

J
χs(kBT/J) + χimp(T ) (3)

with χimp(T ) =
xC0

T + θimp
(4)

where J is the (unknown) magnetic exchange in between
the spins in the kagome planes, x an impurity concentra-
tion, C0 = 0.25(gµB)2/kB the Curie constant and θimp

the Curie-Weiss temperature of the system of impurities.
Equation 4 is the leading term in a high-temperature ex-
pansion for the system of impurities, which provides a
simplified picture of their interactions. To be applicable,
T should therefore be large compared to θimp. We assume
that the system of impurities does not perturb the the
kagome spins.

We optimized numerically the parameters so that χs

fits the theoretical results χth for t ≥ 0.2. As can be seen
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in Figure 1, an almost perfect agreement can be obtained
between χs = J

4C0
(χexp(T ) − χimp(T )) (squares) and the

theoretical estimates for the kagome susceptibility χth

with the following parameters: C0 = 0.504 K cm3/(mol
of Cu) (equivalent to a gyromagnetic factor g = 2.32),
J = 190.4 K, x = 0.03655 and θimp = −6.1 K. We note
that the value of J is in rough agreement with the val-
ues reported in reference [16] (17 meV � 200 K) and [27]
(170 K). We also check a posteriori that the lowest temper-
ature of the fit (t = 0.2 � 38 K) is much bigger than |θimp|,
so that a Curie-Weiss approximation for the impurities is
justified. 6 K is also approximatively the transition tem-
perature reported in ZnxCu4−x(OH)6Cl3 for x < 0.6 (re-
placing some Zn by Cu between the kagome planes) [17],
so this energy scale may correspond to some couplings for
spins located between the planes, where magnetic impuri-
ties could sit. We eventually notice that down to t = 0.15
(that is below the lowest temperature used for the fit),
χexp−χimp continues to increase and to follow the N = 36
curve. This suggests that the maximum of the kagome sus-
ceptibility could indeed be below t = 0.15.

Rigol and Singh [27] analyzed the same experimen-
tal data with another high-temperature method (cou-
pled cluster expansion) and obtained a somewhat differ-
ent conclusion. They argued that Dzyaloshinskii-Moriya
(DM) interactions provide a better description of the low-
temperature increase of the susceptibility than impurities.
Although we agree that DM interactions are certainly
present in ZnCu3(OH)6Cl2 and that they should affect
the physics of the system (at least at low-temperatures),
it is also clear that a few percent of impurities must be
present too and should have a visible effect on the sus-
ceptibility, even at rather high temperatures. According
to reference [27], free impurities cannot explain the sharp
increase of χexp below 60 K. In our analysis, this issue is
solved by allowing for a small ferromagnetic Curie-Weiss
temperature θimp � −6 K for the impurities3. One can
indeed see that, once χimp has been subtracted, the ex-
perimental results show a saturation of χ around 20 K, in
rough agreement with the measurements of reference [19].
The location of the maximum we obtain is however quite
sensitive to the value x of the impurity concentration.

3 Specific heat

The experimental data for the specific heat cv(T ) are
only available at very low temperature where the size ef-
fects on the ED results are large. We therefore also ap-
plied the high-temperature entropy method [28]. It com-
bines three pieces of information about the system: 1)
The high temperature series expansion of cv(T ), up to
T−17 [23,24]. 2) The ground-state energy per site e0

of the Hamiltonian. Here we use the following estimate

3 The Curie-Weiss temperature is an average of the differ-
ent exchange constants. However, due to the complexity of the
interactions between impurities (disorder), the ferromagnetic
sign of θimp does not necessarily imply that they behave ferro-
magnetically at low temperatures.

Fig. 2. (Color online) Specific heat cv vs. temperature T .
Black squares: experimental data from Helton et al. [16], as-
suming J � 190 K. Red triangles: exact specific heat of a
24-site kagome cluster. Green (full), blue(dashed) and ma-
genta(dotted) curves: cv calculated by the entropy method for
three different values of the low-temperature exponent (α = 2,
1 and 0.5). All valid PA from order 14 to 17 with numerator
and denominator of degrees ≥ 3 are shown. For a given α and
at each temperature, their dispersion provides a rough estimate
of the error bars.

e0 = 2〈0|Si · Sj |0〉 = −0.44 [24]. 3) The exponent α de-
scribing the low-temperature behavior of the specific heat:
cv(t → 0) ∼ tα. The method then provides a set of cv(t)
curves (for different Padé approximants) which all satisfy
exactly the following properties: i) cv(T → 0) ∼ T α, ii)
cv(T → ∞) ∼ the series expansion, iii)

∫ ∞
0 cv(T )dT =

−Ne0, and iv)
∫ ∞
0 cv(T )/TdT = NkB ln(2). When the

value of e0 and α are both correct, one usually gets a
large number of very similar curves but if either is in-
correct, only a few and scattered curves will be obtained
(more details in Refs. [28,24]). In the case of the kagome
antiferromagnet, the value of α is not known and the en-
tropy method gives a reasonable convergence for α = 1
and α = 2 [24]. Motivated by the experimental observa-
tion [16] of a low-temperature cv with an exponent smaller
than one, we also include here a calculation with α = 0.5.

The results for some valid PA from orders 14 to 17
are displayed in Figure 24 together with the exact result
obtained by ED of the full spectrum of a 24-site kagome
cluster. For t > 0.3, these results are practically exact.

4 By the entropy method, the entropy s(e) is obtained as the
power α/(α + 1) of a rational fraction (PA) of the energy per
site e. The specific heat curve is then obtained parametrically
through T (e) = 1/s′(e) and cv(e) = −s′(e)2/s′′(e). Only the
PA which satisfy s(e) > 0, s′(e) > 0 and s′′(e) < 0 in the range
]e0, 0[ are physically “valid”.



308 The European Physical Journal B

Fig. 3. (Color online) Entropy S vs. temperature. Square, tri-
angles and circles: experimental data from Helton et al. [16]
with magnetic field B = 0, 5 and 14 Teslas, plotted as a func-
tion of kBT/J with J = 190 K. Green (full), blue(dashed)
and magenta(dotted) curves: entropy calculated by the entropy
method for α = 2, α = 1 and α = 0.5 (same PA as in Fig. 2).

In the two scenarios α = 1 and 2 there is a significant
dispersion of the results for t < 0.3 from one PA to an-
other [24]. 5 In both case, cv show a low-t peak or shoul-
der as found from ED of finite-size systems. The choice
α = 0.5 leads to a smoother cv(t) and improves signifi-
cantly the convergence. It is however not clear if this im-
proved convergence for small values of α (0.5 � α � 1)
indicates that α is actually smaller than one or an artifact
of the present entropy method, which might be “slower”
to stabilize a low-t peak (as with α = 2, see Fig. 2), than a
smooth curve (as with α = 0.5). In any case, this is clearly
related to the unusually large low-temperature entropy of
the kagome system.

Figure 2 also displays the experimental results (black
squares) obtained by Helton et al. [16] The only parame-
ter here is the exchange constant, taken to be J � 190 K
from the fits of the susceptibility data. Above 15 K, the
phonon contribution is dominant and we have to focus on
the lower temperatures to analyze the magnetic contribu-
tion. Below 15 K the order of magnitude agrees with our
calculation but there is no quantitative agreement. Several
“perturbations” such as weakly interacting magnetic im-
purities or magnetic anisotropies should indeed contribute
to the specific heat at such low temperatures.

Results for the integrated entropy S(T ) =∫ T

0 cv(x)/xdx are plotted in Figure 3, where one
sees that the choice of the low-T exponent α of cv has
practically no influence on the theoretical S(t = kBT/J)
above t � 0.06 and that, around this temperature, the
experimental value is significantly lower than in our
calculations. Of course, subtracting the contribution of
the phonons (hard to estimate quantitatively) and from

5 This is due to the finite order in the high-temperature
expansion. Still, for a given value of α, we believe that this
method gives a qualitatively correct picture for cv(T ), even at
low T .

the impurities would make the discrepancy even larger.
Concerning the impurities, one sees in Figure 3 that an
applied magnetic field of 5 and 14 Teslas is enough to
significantly reduce S(t) for t � 0.06. Such fields are low
in comparison to J but of the order of the estimated
coupling between the impurities. The difference between
the curves at 0 and 5 (or 14) Teslas may thus provide a
rough estimate of the contribution of the impurities. Note
that S(t) at 5 Teslas become closer to the S(t) computed
by the entropy method with α = 2. The experimental
value α < 1 could be due to the impurities and the actual
value of α for the kagome spins could be larger than
1. In any case, at t = 0.06(�11 K), the experimental
entropy (�0.2 ln 2) is thus at least 7% of ln 2 below the
theoretical estimates (0.27 ln 2). This seems a rather
robust indication that some additional interactions play
some role in this energy range, by freezing some degrees
of freedom of the spins in the kagome planes and pushing
the corresponding entropy to higher energies. We may
mention in particular DM interactions [27], non-magnetic
impurities in the kagome planes (“dilution”) [20] and
interactions between impurities and the kagome spins.
We conclude that 15 ∼ 20 K is a minimal temperature
for a kagome lattice Heisenberg model description of
ZnCu3(OH)6Cl2 to be valid.

We are grateful to C. Lhuillier for many discussions and com-
ments about the manuscript. We also thank P. Mendels and
F. Bert for useful discussions. GM also thanks Y.S. Lee and
J. Helton for discussions and for providing their data as well
as P.A. Lee, Y. Ran, T. Senthil, X.-G. Wen for discussions on
related topics.

Note added:

After the first submission of this manuscript, two
preprints [20,25] (neutron scattering) confirmed the im-
portance of magnetic impurities (from 6% to 10%) in
ZnCu3(OH)6Cl2. The smaller value found here could be
due to our simplified model to fit the magnetic suscepti-
bility.
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